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I. INTRODUCTION

Remote exploration will require combining robotic auton-
omy with human understanding and supervision. Due to size,
weight, computation, communication, and power constraints,
it is difficult for remote robot explorers to solve complex
decision-making problems onboard and in real time, while also
accurately perceiving and reasoning about their environments.
It can also be very difficult for human users (particularly those
who are not robotics experts) to fully trust and take advantage
of remote robotic autonomy if the basis on which autonomy
acts is unclear [1]. Against this backdrop, research is underway
to improve human-autonomous robotic exploration efficiency
and quality by treating human users – presumably, task domain
experts who possess better high-level perception capabilities
than robots – as secondary sensors, which can provide valuable
semantic information to improve robotic decision-making in
uncertain environments [5]. In these works, semantic soft data
(e.g. “There are some interesting deposits around that rock’)
are given to the robot via a user-friendly natural language
and/or map-based sketch interfaces. Probabilistic models can
then be developed to interpret and fuse semantic soft data
with the conventional ‘hard’ sensor data observed by the robot
[8], [9], and efficient active semantic sensing strategies based
on partially observable Markov decision process (POMDP)
planning can be used to query human sensors to mitigate state
uncertainties during online plan generation [2], [3], [4].

Note that unlike [11], in which supervisors provide reward
labels (with some delay), we consider how supervisors act as
sensors that can also provide (imperfect and noisy) information
about environment dynamics, obstacle and target of opportu-
nity existence/location, etc., which can be strategically queried
and fused with other data via Bayesian reasoning methods.
Since small amounts of semantic soft data can yield drastic
changes in beliefs, huge gains in decision-making performance
can be obtained for POMDP-based active sensing, along
with the ability of supervisors to inspect robot state beliefs
that drive behavior [3]. However, existing methods for active
semantic sensing do not account for significant time delays
that arise from extreme distances as well as human factors.
Ref. [6] describes how offline POMDP policy approximations
such as point-based value iteration (PBVI) can be adapted
via state augmentation to account for beliefs in delayed
observations. However, this approach leads to a rapid increase
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Fig. 1. Operational concept: mobile robot sends data to ask if there is
anything of interest in the environment; the supervisor sends delayed semantic
observations to the robot; based on the semantic information, the robot updates
target/obstacle location beliefs and chooses an action.

in the dimension and complexity of the state belief space,
and thus becomes impractical to implement for problems with
non-trivial state, action and observation spaces. For example,
suppose the mobile robot in Fig.1 is exploring a lunar cave,
and relays imagery data to a supervisor stationed off the lunar
surface to determine whether there are high value science
targets in the area that should be localized for followup study.
Since the whole cave cannot be explored and imagery cannot
be processed onboard due to limited computation power, the
supervisor sends back semantic observations based on the
received imagery, after discussion with science experts. The
robot can still decide where to navigate on its own before re-
ceiving answers, but limited onboard sensing capabilities mean
that information from human semantic sensing is also required
to detect certain hazards (e.g. negative obstacles, impassable
terrain, etc.) along with possible targets of opportunity. As
the state and semantic observation spaces can be quite large
and dynamic for exploration of uncertain environments [4],
the curses of dimensionality and history also make it difficult
to rely on offline POMDP solvers.

In this work, we examine how Partially Observable Monte
Carlo Planning (POMCP) [7], an anytime fashion sampling-
based online POMDP solver, can be applied to the problem
with delayed semantic human observations. Since POMCP has
not yet been widely investigated in time delayed observation
settings, we present initial simulation results on a simple
benchmark problem. Analysis suggests that online planning
offers a promising approach to dealing with semantic obser-
vation data characterized by time delays and variable accuracy,
and that decision-making performance can be more sensitive
to human sensor accuracy than time delay in certain cases.



II. TECHNICAL APPROACH

Fig. 1 shows a simplified 1D version of the mission concept,
where a valuable science ‘target’ ( left) and large obstacle
(right) are each at unknown locations along a traversable
pathway (grid). The mobile robot (middle) must locate and
reach the target cell as quickly as possible, without hitting the
obstacle. At each step, the robot obtains image data for cells
immediately around it (yellow). A remotely stationed human
will receive and analyze the data, and then report relevant
semantic science and hazard information to guide planning,
according to a predefined semantic observation codebook, e.g.
‘Neither target nor obstacle are in view’. For simplicity here,
no other sensors are available, and the transmit time is smaller
than the (fixed) time TD ∈ Z0+ the human spends processing
each image, creating a one-sided observation receipt delay.

The POMDP tuple (S, A, T , R, Ω, O, γ) for this scenario
is as follows. The state st = [sr,t, star, sobs]

T ∈ S, where sr,t
is the robot’s (known) position at time t, star is the unknown
target position, and sobs 6= star is the unknown obstacle po-
sition. The action space A includes {Left,Right, Stay}; the
robot can move to the intended direction with 90% probability,
and with 5% probability it ends up executing one of other two
actions. For discount γ = 0.9, a large positive rewardR results
when sr,t = star and a = Stay; a large negative reward results
when sr,t = sobs and a = Stay. A small positive/negative
reward results when moving into the target/obstacle cell;
a small loitering penalty results for other state and action
pairs. The semantic data codebook has |O| = 17 possible
observations ot defined by p(ot|sr,t, star, sobs) (not listed here
due to limited space). This characterizes the human sensor:
given sr,t, star, sobs, a ‘correct’ semantic report is provided
with probability HA, and an ‘incorrect’ report occurs with
probability (1−HA)/16. While this toy scenario greatly limits
|S| and |A|, the large |O| makes augmentation-based offline
policy approximations [6] quite expensive even for small TD.

To address this, online POMCP policy approximation is
used to find an optimal decision at each decision-making
instance. The main idea behind POMCP is similar to the
sampling-based Monte Carlo Tree Search (MCTS) online
planning algorithm for Markov decision processes, which uses
four main steps (tree search, tree expansion, simulation, and
backpropagation) to estimate the state-action value function
Q(s, a) starting from the current state up to some specified tree
depth, before choosing an optimal action a which maximizes
Q. In POMCP, Q(s, a) is replaced by Q(h, a), where h
represents a history of past actions and observations, and
simulations of actions and observations to come up with local
policy approximations starting from the robot’s initial belief
over the state st, given all available/received observations
up to a given time. Following the implementation of the
POMCP algorithm from [7], we manually tuned the search
depth to 20 and exploration parameter to 2 (though POMCP
hyperparameter tuning can also be performed online [12]).

We use simulation studies to assess POMCP’s performance
in this problem in terms of the number of steps required for

Fig. 2. Comparison between ideal situation (TD=0) and situation with
delayed observations (TD=4). In this figure, I, B, TD, and HA represent Ideal,
Baseline, Time Delay, and Human Accuracy level, respectively.

the robot to find the target and total accumulated reward.
Monte Carlo trials of 100 runs per test condition were used
to investigate the extent to which exploration was affected by
different values of TD (2,4) and HA (1.0,0.9,0.6,0.3). Note
that POMCP implementation for the TD = 0 case is used as
a comparison against POMCP implementation with TD 6= 0,
to provide an ‘ideal’ upper performance bound. We also re-
ran the TD = 2 cases with a variety of randomly generated
strong and weak initial state/obstacle location distributions to
assess sensitivity to the quality of prior state beliefs.

We highlight the main results 1. Fig. 2 shows total reward
and time to capture for ‘ideal’ TD = 0 POMCP (black box
plots) and TD = 4 POMCP (pink Box plots), with increas-
ingly worse human sensor accuracy and uniform priors. When
HA is significantly different, performance is also significantly
different within the TD = 0 and TD = 4 groups (e.g.
p = 0.004, when compared the results of total reward in the
case of I HA = 1.0 and I HA = 0.3). Also, between the
TD = 0 and TD = 4 runs, significant differences are only
seen when the human accuracy is high (i.e. HA = 0.9 and
HA = 1.0), although differences are only due to the fixed
TD. No significant performance differences were found for
POMCP between TD = 0 and TD = 4 given the same
HA values. POMCP thus appears on average to be robust
to the delays considered for this scenario (also the case across
different prior types). Also, HA plays a more significant role
here regardless of TD. This is not too surprising since the
human provides all data here, but hints at the need to develop
methods that can filter ‘outlier’ human reports to ensure best
performance. We also ran tests to assess whether POMCP’s
performance could be improved by augmenting delayed ob-
servations to the state within the tree search to ‘anticipate’ in-
coming information, as in [6]. We modified ‘baseline’ POMCP
to forward sample delayed observations ot−TD+1:t, based on
augmented state beliefs at time t conditioned on o1:t−TD. This
did not provide a statistically significant performance gain over
baseline POMCP, most likely due to the increased difficulty
of sampling relevant joint delayed report, target and obstacle
state configurations for large |O|.

1in all cases, significance at p = 0.05 assessed via Mann-Whitney U-tests
on total reward and time to reach target data
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