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I. INTRODUCTION

Multi-Agent Path Finding (MAPF) is a fundamental chal-
lenge in robotics and artificial intelligence (AI) in which the
goal is to plan a path for multiple agents to reach their
respective goal regions such that, when the plans are executed
simultaneously, every vehicle successfully completes their path
without colliding into other agents. The applications of MAPF
can be found in many areas where several moving agents
interact in a shared workspace. However, the use of various
AI systems, including MAPF, is limited by current algorithms’
inability to explain their decisions and actions to human
users [9]. In many safety-critical situations, such as air-traffic
control, or hazardous material warehouses, MAPF typically
is not fully automated. Instead, the paths for each agent are
generated using motion-planning techniques and given to a
human-supervisor before execution. The supervisor’s job is to
verify that the automatically generated plan is safe (collision-
free). Thus, these settings require the plan to be presented in a
humanly-understandable manner. Specifically, the presentation
should enable the supervisor to understand the path taken by
individual agents and to verify that the agents do not collide.
To this end, the goal of this work is to present a method of
generating explainable motion plans for multi-agent systems.

Significant effort has been dedicated to providing explana-
tions for problems in AI and machine learning. For example,
the work of [6] utilized visualization to explain the result
of certain machine learning algorithms that often come up
with complicated classifiers. In [2], explanations are given by
analyzing alternative plans with some user-defined properties.
In [5], a user proposes a plan, and explanations are given as
a minimal set of differences between the actual plan, and the
proposed plan. A broader approach was later given in [3],
where multiple types of explanations are allowed.

This work is similar to [6], where the aim is to explain the
solution to a MAPF problem to a human using visualization
techniques. With this goal in mind, one may suggest a se-
quence of images or video to explain the solution. However,
watching a video takes a long time, and is nearly impossible,
if there are more than 3 agents. Our approach is different
in that we base the explanations on the simplicity of visual
verification by human’s cognitive process. Specifically, work
[4], and [8] show the identification of line intersections is made
very early in the cognitive process (namely in the primary
visual cortex). Thus, MAPF can best be explained using a
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Fig. 1: A plan for three agents in a grid. The circles and stars mark
the initial and goal locations for the agents, respectively. (a) shows
the full plan, and Figures (b), and (c), show a disjoint decomposition.

collection of non-intersecting path segments. An example of
such an explanation is shown in Fig. 1.

Previous work [1] on explainable MAPF focused on provid-
ing this explanation scheme over a discrete graph. That work
also found that as the number of disjoint segments required to
explain the path decreased, the ease of explainability increased.
Furthermore, [1] proved that finding optimal explanations for
pre-existing motion plans can be done in polynomial time,
whereas generating plans for explainability, i.e., limiting the
number of segments, is, at best, NP-Complete.

This work focuses on MAPF with explanations for realis-
tic robotic systems in continuous space with kinodynamical
constraints. This problem is challenging because motion plan-
ning needs to be done in the compound (continuous) state
space of the agents, whose dimension is exponential in the
number of agents. Moreover, kinodynamical and explanation
constraints add more complexity to the planning problem.
Hence, the goal of this work is to design a computationally-
tractable MAPF algorithm that generates sound plans that are
easily explainable. This paper proposes two approaches to this
problem: abstraction-based and tree-based search. By utilizing
abstraction techniques, the continuous MAPF problem can be
lifted to the discrete domain. Then, the results of [1] can
be employed, which showed that it is possible to compute
and explain a plan in the abstraction by using an A∗-based
algorithm. This method simplifies the problem, but at the cost
of sacrificing completeness. To address this problem, we are
currently investigating a tree-based search algorithm capable
of presenting efficient explanations. We introduce preliminary
results on this algorithm in this paper.

II. PROBLEM FORMULATION AND APPROACH

Problem. We consider k ∈ N robotic agents with dynamics

ẋi = fi(xi,ui), xi ∈ Xi ⊆ Rni , ui = Ui ⊆ Rmi (1)



where i ∈ {1, . . . , k}, Xi and Ui are the state space and
input space for agent i, respectively, fi : Xi × Ui → Xi

is an integratable and possibly nonlinear function. Once fi is
given a control input and integrated for some non-zero time
duration ∆t = [t1, t2], a trajectory segment is formed for agent
i denoted by xt1:t2

i .

We assume that agents share a 2-D workspace W ⊂ R2. We
define PROJXi

W to be function that projects trajectory xt1:t2
i onto

workspace W . Then, we say two trajectory segments xt1:t2
i

and xt1:t2
j are disjoint if PROJXi

W (xt1:t2
i )∩PROJ

Xj

W (xt1:t2
j ) = ∅.

Further, given m ∈ N time intervals, we define trajectory
Ti = {xt0:t1

i ,xt1:t2
i , . . . ,x

tm−1:tm
i } to be a set of m trajectory

segments that takes agent i from an initial point to a desired
goal region XG

i ⊂ Xi.

Given a planning problem consisting of k agents in a shared
workspace W , the goal of continuous MAPF is to find a
trajectory Ti for every agent such that no agent collides with
obstacles nor with other agents and xi(tm) ∈ XG

i for all
i ∈ {1, . . . , k}. The goal of explainable MAPF adds two
constraints: (i) perform a segmentation of the trajectories such
that the segments are disjoint, i.e., compute time durations
[t0, t1], . . . , [tm−1, tm] such that the corresponding segments
in each time interval are disjoint, and (ii) the number of
segments (explanations) cannot be larger than r ∈ N, the
maximum desired number of explanations, i.e., m ≤ r.

Approach. We propose two approaches to this problem.
The first approach is based on an abstraction of the planning
problem to a graph by discretizing the workspace W and
designing control laws that guarantee the realization of edges
of the graph with a fixed time duration in the continuous
domain as detailed in [1]. Then, the planning problem on the
graph can be solved using the A∗-based planner proposed in
[1]. The second approach is based on centralized motion plan-
ning with a sampling-based tree search. Specifically, we build
upon a rapidly-exploring random tree (RRT) [7] to plan with
respect to explainability while maintaining the probabilistically
completeness property of RRT. The tree is initialized with a
maximum number of allowed disjoint trajectories required to
explain the path. Then, as the tree grows, each node is given
a cost that is equivalent to the number of decompositions
required to explain the trajectory from the initial point, to
the node. The tree only grows nodes that have costs within
the pre-specified threshold. The result is a trajectory that is
decomposed into a satisfiable number of disjoint segments.

The work [1] finds segmentation using greedy search,
and utilizes this to maintain optimal decompositions during
planning. This, however, becomes computationally infeasible
in the continuous domain. Thus, our planner recursively tracks
the number of intersections. In the worst case, the number of
intersections is equal to the number of compositions required
to explain the path. Our planner exploits this concept by only
performing greedy search on trajectories where the number of
intersections are greater than threshold r. This method limits
the computational cost to allow for feasible MAPF.

(a) Full Plan (b) Time = [0.0, 36.6] s

(c) Time = [36.6, 87.9] s (d) Time = [87.9, 123.6] s

(e) Full plan with one segment.

Fig. 2: Two agents travel
from their starting points
(left) to their circular goal
regions (right). The plan in
(a) is explained with 3 seg-
ments (b)-(d), and plan in
(e) explained with 1 seg-
ment.

III. EXPERIMENTS

We present preliminary results of our two approaches here.
First, we consider three agents with second-order unicycle dy-
namics in the environment in Fig. 1a. We used the abstraction
method for this case, which resulted in a plan that can be
explained in two segments, as shown in Figs. 1b and 1c.

The second experiment involves two agents with first-order
dynamics. The environment is shown in Fig. 2a. We use our
RRT-based planner, which is capable of restricting plans to a
desired level of explainability. If no limitation is given, RRT
returns a path that requires 8 disjoint trajectory segments to
explain the entire path in 30 seconds. The plan, however, is
hard to explain. Alternatively, the user can limit the number
of explanations to 3, as shown in Figs. 2b-2d. This solution
took about 5 minutes of computation time. Restricting the
explanations to 1, the planner returns the plan and explanations
in Fig. 2e, which took about 10 minutes to compute. These
case studies demonstrate that the planning becomes more
difficult as the desired number of explanations is reduced.

IV. CONCLUSION

This work exploits the humans’ natural cognitive process
to explain multi-agent motion plans using images of disjoint
path segments within a 2-D workspace. An abstraction-based
method allows the use of the discrete planner developed in [1].
Alternatively, our probabilistically complete tree-based planner
takes the maximum allowable number of explanations from the
user and returns a plan with a satisfiable explanation scheme.
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